Table of Contents

													page

Passing multi-dimensional Arrays to functions	…………		2

Pointer arithmetic	...……..		3

Relationship between Arrays and Pointers	……………….		4

File handling 	...…………...		5

Strings 	...…………………		6 – 12

Commonly Used String + Character-Handling Functions ….		13

Command-Line Arguments	...		14

Variables		...……………		15 – 17

Special Type Qualifiers	...		18

Scope of Functions 		...		19 – 20

User-Defined Types 		...		21 - 22

More examples of structures	..		23

Accessing Structure Members	..		24

Operations with Structures	...		25 – 26

User-Defined Types		...		27 – 28

C Pre-Processor (CPP)	...		29 – 32

BITWISE Operators		………………………………….		33

Bit Manipulation		………………………………….		34

Common Errors in C:		………………………………….		35 - 37�
Passing multi-dimensional Arrays to functions:

When a multi-dimensional array is a parameter to a function, the sizes of all dimensions except the first must be specified (so that the compiler has enough information to do the indexing calculations).

Eg.

Float total_sales(float sales[][num_products])

{

	int i, j;

		float total;

	for(i=0; i<num_months; i++)

		{

		for(j=0; j<num_products; j++)

			 total += sales[i][j];

	}

		return (total);

}

OR

Float sum_floats(float *a, int n);

Float total_sales(float sales[][num_products])

{

		int i;

		float total;

	for(i=0; i<num_months; i++)

		 total += sum_floats(sales[i],num_products);

	return (total);

}

�
Pointer arithmetic (mostly used with arrays)

Adding an integer N to a pointer P gives a new pointer that points to a memory location that is N * sizeof(*P) bytes beyond P.

Eg.

	Float *ptr;

	Suppose the value of ptr is 63051

	Then if sizeof(float) is 4,

	The value of ptr + 1 is 63055

	The value of ptr + 2 is 63059

	The value of ptr + n is 63051 + n*4

Subtracting an integer form a pointer is the same as adding the negative of that integer:

Eg.

	(as above)

	The value of ptr – 1 is 63047

	The value of ptr – 2 is 63043

	...

Subtracting one pointer from another pointer of the same type gives an integer which tells the number of objects of that type that would “fit” between the two pointers.

Eg.

	float *ptr1, *ptr2;

	ptr1 = ptr + 6;

	ptr2 = ptr – 3;

	

	The value of (ptr1 – ptr2) is 9

�
Relationship between Arrays and Pointers:

The name of an array can be thought of as a constant pointer (that points to the first element of the array).

Eg.

	int num[3];

	int *ptr1, *ptr2;

	ptr1 = &num[0];	//address of 1st element

	ptr2 = num;			//same as ptr1

Adding 1 to a pointer shifts it over so that it points to the next array element.

Subtracting 1 from a pointer shifts it to point to the previous array element.

Adding K to a pointer shifts it over K positions.

Eg.

	ptr2 = &num[1]; 	//address of 2nd element

	ptr1++;				//same as ptr2

	Now the value *ptr1 is num[1].

In general: p[i] is the same as *(p+i)

�
File handling

#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);

Opens a file. Usually mode is ‘r’, ‘w’ or ‘a’ indicating that the file is to be opened for reading, writing or appending. Returns NULL if unsuccessful, otherwise the return value is to be used in the ‘f’ functions – eg. fprintf();

	int fflush(FILE *fp);

		Flushes any pending data that was buffered.

	int fclose(FILE *fp);

Flushes all buffers and closes the file. (important since only a limited number of files may be opened at one time in one process).

	stdin

	stdout

	stderr

Standard streams (FILE pointers) opened automatically and connected to the keyboard for input and to the screen for regular & error output.

�
Strings (use #include <string.h>)

A “string” in C is a pointer to char with the end of the string indicated by a null character: ‘\0’

	Ex: ‘P’, ‘i’, ‘n’, ‘g’

There are many standard library functions that deal with strings and they all assume that the (char *) values passed to them are null-terminated. The compiler and the standard functions which produce strings usually handle the null-termination automatically.

Eg.	//pointer variable (that points to char array)

	Char *str = “Hello World”;

	Str[0] is ‘H’

	Str[1] is ‘e’

	...

	Str[10] is ‘d’

	Str[11] is ‘\0’

//***

	//char array

	Char strA[] = “Hello World”;

	StrA[i]		//are the same as str[i] above

	BUT

	sizeof(str) is sizeof(char *) eg. 4

	sizeof(strA) is sizeof(“Hello World”) //which is 12

	strlen(str) is 11

	strlen(strA) is 11

�
Strings (examples):

int i, len;

char name[30]; //allows a maximum of 29 letter + 1 null-terminater

scanf(“%s”, name); //no & is needed since name is a pointer to char

suppose the user enter “Cameron_Hayne“,

				 0123456789012

then the value of 	name[0] is ‘C’

				name[1] is ‘a’

				...

				name[12] is ‘e’

				name[13] is ‘\0’

	len = strlen(name);	//len is 13

	for(i=0; i<len; i++)

	{

		if(name[i] == ‘_’)

		{

			name[i] = ‘\0’;

			break;

		}

	}

	len = strlen(name);		//len is 7

	printf(“%s”, name);		//prints Cameron

�
Strings (Review of Memory Allocation):

	char *str1 = “Hello”;

	char *str2 = NULL;

	char str3[10] = “World”;

	str1				---> ‘H’’e’’l’’l’’o’ 0

	

	str2				

	str3				---> ‘W’’o’’r’’l’’d’ 0 _ _ _ _

	str2 = str1;

	str2

	str2 = str3;

	str2 = malloc(20);

	str2 ---> ‘_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _’

	strcpy(str2, str3);

�
Strings (examples):

Function to skip over the white space:

#include <ctype.h>

char * skip_white_space(char *str)

�� 	{

�		while(isspace(*str))

	 	 str++;		

		return (str);	//This function does not change the string is passed

}

Calling the function:

char *Get_name(skip_white_space(name));

Instead of:

Get_name(name);

Function to get the second component of a name:

char *last_name(char *name)

{

	char *ptr = name;

	while(isalpha(*ptr))

	 ptr++;

	return(ptr);	//It is ok to return the value of the local pointer variable

//since the memory it points to is not local.

}

�
Strings (examples):

Capitalizing a string:

(eg. To change “hayne” to “Hayne”):

Version that changes the string passed to it:

#include <ctype.h>

void capitalize(char *str)

{

	if (str != NULL) //precaution

	 *str = toupper(*str);

}

Version that returns a capitalized copy of the string passed to it:

	#include <ctype.h>

	#include <string.h>

	

	char *capitalize(char *str)

	{

		static char buffer[MAX_SIZE)

��		if (str == NULL)

�		 return (NULL);

		(void) strcpy(buffer, str);

		*buffer = toupper(*buffer);

		return (buffer);

	}

�
Strings (examples):

A function to reverse a string:

char *reverse_string(char *str)

{

	 	static char buffer[max_chars];

	 	int len, i, j;

		if (str == NULL)

			return (NULL);

		len = strlen(str); //should check that len < max_chars

		for (i=(len-1), j=0; i>=0; i--, j++)

		{

			buffer[j] = str[i];

		}

		buffer[j] = ‘\0’; //NULL terminator

		return (buffer); //returned pointer points to static memory

}

Question:

Does the above function correctly handles the case of an empty string?

i.e. reverse_string(“”);

	char *ptr =””;

	ptr[0] is ‘\0’ and strlen(ptr) is 0.	

�
Strings (examples):

Possible implementation of the standard library function:

1.

	char * strcpy (char *dest, char *src)

	{

		int i=0;

		while ((dest[i] = src[i] != ‘\0’)

			i++;

	}

2.	(use pointer notation)

	char *strcpy (char *dest, char *src)

	{

		while ((*dest++ = *src++) != ‘\0’)

				;

		return (dest);		//pointer

	}

�
 Commonly Used String + Character-Handling Functions:

#include <stdio.h>

	int getchar(void);

	int putchar(int ch);

	

	char *gets(char *str);

	int puts(const char *str);

	int printf(const char *fmt, ...);

	int scanf(const char *fmt, ...);

	int sprintf(char *str, const char *fmt, ...);

	int sscanf(const char *str, const char *fmt, ...);

	#include <stdlib.h>

	int atoi(const char *str);		//see also strtol()

	double atof(const char *str);	//and strtod()

	

	#include <ctype.h>

	int isalpha(int ch);

	int isspace(int ch);

	int toupper(int ch);

	#include <string.h>

	size_t strlen(const char *str);

	int strcmp(const char *str1, const char *str2);

	char strcpy(char *dest, const char *source);

	char strcat(char *dest, const char *source)

�
Command-Line Arguments:

Instead of “hard-coding” values into a program, command-line arguments can be used to set values when the program is run.

The strings that the user typed on the command line (at the shell prompt) are available via the standard argc and argv parameters to main().

argc	-	gives the number of arguments.

argv	-	is an array of strings containing what the user typed (array[0] is

the name of the program).

Eg.

	int sum_first_n(int n);

	int main(int argc, char *argv[])

	{

		int n = 10;		//default value

		if (argc > 1)

		{

			int num;

			num = atoi(argv[1]);

			if (num > 0)

				n = num;

		}

		printf(“The sum of the first %d integer is%d\n

				n, sum_first_n(n));

		return(0);

	}

�
Variables:

Definition & Declaration Scope & Lifetime Initialization:

Definition of a Variable:

tells the compiler to allocate storage.

Optional initializer.

Eg.

	Int num = 7;

	Double x, y, z;

Declaration of an External Variable:

tells the compiler that you are referring to a variable that is defined elsewhere.

Eg.

	Extern int num;

Scope of a Variable:

Global scope 	--- 	visible everywhere in the program.

File scope 	--- 	visible in the rest of the file.

Block scope 	--- 	visible in the rest of the block.

Supercedes variables of the same name defined in outer block.

Lifetime of a Variable:

Global and file scope variables have the lifetime of the program. They are initialized by default to zero.

Block scope variables either auto(the default) or static.

Automatic variables have the lifetime of the block in which they are defined. They are not initialized by default so they contain garbage values until they are explicitly initialized.

They do not preserve their values between executions of the block.

Block scope variables that are declared as static have the lifetime of the program.

They are initialized by default to zero.

They preserve their values between executions of the block.

Example of Variable Scope & Lifetime:

This example program is in two files: FileA & FileB.

FileA:

/*This file contains two functions: 	*/

/*	get_two_numbers(): prompts the user to enter two integers. 	*/

/*	sum_the_numbers(): adds the two numbers and puts the result in 	*/

/*						 the global variable ‘sum’.				*/

/**/

#include <stdio.h>

	int sum;

	static int num = 42, other_num = 3;

	

	void get_two_numbers(void)

{

		printf(“Enter two numbers: \n”);

		scanf(“%d %d”, &num, &other_num);

	}

	void sum_the_numbers(void)

	{

		sum = num + other_num;

	}

�
Example of Variable Scope & Lifetime:

FileB:

/* This file uses the functions and global variable from FileA */

	#include <stdio.h>

	

	extern void get_two_numbers(void),

sum_the_numbers(void);

	static int num = 7;

	int main(int argc, char *argv[])

	{

		int i;

		for (I=0; i<num; i++)

		{

			extern int sum;

			static int num;

			get_two_numbers();

			sum_the_numbers();

			printf(“Sum of two numbers is %d\n”, sum);

			num += sum;

			printf(“Total so far is %d\n”, num);

		}

		printf(“Number of iterations was %d\n”, num);

	}

�
Special Type Qualifiers:

Register�
-�
Provides a hint to the compiler that a Variable will be heavily used.

�
�
�
-�
Otherwise lie an auto variable except that

�
�
�
�
Eg. Register int I;�
�
�
�
�
�
�
�
�
�
Const�
-�
Tells the compiler that the value of this variable will not change.

�
�
�
�
Eg. Const int num = 7;�
�
�
�
�
�
�
�
�
�
Volatile�
-�
Tells the compiler that the value of this variable may get changed by the hardware.

�
�
�
�
Eg. Volatile int time;�
�

	

�
Scope of Functions:

By default, functions have global scope.

i.e. the function can be called from anywhere in the program, even from a different file.

The keyword static can be used to make a function visible (and usable) only within the file where it is defined.

Example:

FileA:

Static int add(int a, int b)

	{

		return (a + b);

	}

	int sum_first_n(int n)

	{

		int sum;

		if (n <= 0)

			sum = 0;

		else

if(n == 1)

				sum = 1;

			else

				sum = add(sum_first_n(n-1), n); //recursion

		return (sum);

	}

�
FileB:

	#include <stdio.h>

	

	extern int sum_first_n(int n);

	static int add(int x, int y);

	int main(int argc, char *argv[])

	{

		printf(%d\n”, add(sum_first_n(13),

						sum_first_n(5)));

	}

	static int add(int a, int b)

	{

		printf(“Adding %d and %d\n”, a, b);

		return (a + b);

	}

�
User-Defined Types:

struct

Used to define a data type that is an aggregate of simpler types.

Examples:

	Struct Date_t

	{

		int day;

		int month;

		int year;

	};

	struct num_t

	{

		char *str;

		int num;

	} value;

	struct Date_t birth, death;

	struct num_t new_values[3],

					values[] = {{“Hello”, 36},

								 {“Bye”, 9 },

								 {“in”, 57 }

								 {“out”, 0 }};

�
User-Defined Types:

typedef

	Used to define an alternative name for a data type.

Example:

	

typedef int length_t;

	

	typedef char *string;

	typedef enum

	{Sun, Mon, Tue, Wed, Thu, Fri, Sat} Day_t;

	typedef enum Shapes Shape_t;

	

	

	length_t len, *ptr_len;

	string str1, str2;	//note the advantage over:

							//char *str1, *str2;

	Day_t today, yesterday;

	Enum Shapes s1;

	Shape_t s2;

	...

	...

	len = strlen(str1);

	if (s1 != square && s1 == s2)

		...

�
More examples of structures:

struct Student_t

{

		string name;

		int id;

		struct Date_t birthday;

		struct Date_t registration;

};

typedef struct Student_t StudRec;

typedef struct

{

 	float x, y, z;

} Point_t;

typedef struct Line3D

{

	Point_t pt;

	struct Line3D *next;

} Line3D_t;

Point_t initial, final;

Line3D_t *lines;

�
Accessing Structure Members:

If student is a variable of type struct Student_t (Previously defined as having member name, id, birthday and registration. Eg. struct Student_t student) then the members are referred to using the “dot” . operator:

student.name = “Joe Fish”;

student.id = 1234567;

student.birthday.year = 73;

student.birthday.month = 11;

student.birthday.day = 29;		//sub-structure

If ptr is a variable which is a pointer to a struct Student_t then the members of the structure are referred to using the “arrow” -> operator:

	ptr -> name = “Mary di Michele”;

	ptr -> id = 1234567;

	ptr -> birthday.day = 6;

	ptr -> birthday.month = 8;

To assign a pointer that points to ‘student’ structure:

struct Student_t *ptr;

ptr = &student;�
Operations with Structures:

Assignment of structure values is allowed:

Eg.

	Point_t data1, data2;

	Point_t find_data(void);

	Data1 = find_data();	//copies structure as a whole

	Data2 = data1;

Comparison of structures as a whole via == is not allowed.

To compare two structure variables, you have to write a function for the purpose:

Eg.

	int points_are_same(Point_t *pt1, Point_t *pt2)

	{

		return (pt1 -> x == pt2 -> x

				&& pt1 -> y == pt2 -> y

				&& pt1 -> z == pt2 -> z);

	}

	...

	...

	if (points_are_same(&data1, &data2))

		do_something();

�
Operations with Structures:

Structures can be passed as arguments to functions and can be returned from functions: (Two ways: directly or via pointers)

Eg.

	Float distanceA (Point_t pt)

	{

		float d2;

		d2 = pt.x *pt.x + pt.y *pt.y + pt.z *pt.z;

		return (sqrt(d2));

	}

	float distanceB (Point_t *ptr)	//could use const

	{

		float d2;

		d2 = ptr->x *ptr->x + ptr->y *ptr-> +

 ptr->z *ptr->z;

		return (sqrt(d2));

	}

	Point_t data = {3.0 , 2.6, 5.7};

	Printf(“%g %g”, distanceA(data), distanceB(&data));

�
User-Defined Types:

enum

Used to define a data type that takes on one of a small set of integer values.

Examples:

	enum Shapes {triangle, square, hexagon, circle};

	

enum Dimensions {oneD=1, twoD=2, threeD};

	

enum Classes {lower, middle, upper} person, style;

	

enum {left, right} hand1, hand2;

	

	enum Shapes shape1, shape2;

	...

	...

	if (shape1 == hexagon)

		...

Default values are 0, 1, 2, ...

Can specify values to override defaults.

Unspecified values follow in sequence from the last specified value.

“Tag” name is optional.

Note the final semicolon!

�
User-Defined Types:

union

Used to defined a variable which will hold (at different times) values of different type and sizes.

Usually used together with another variable which indicates what type of data is currently stored in the union.

Eg.

	union Glob_t

	{

		int ival;

		float fval;

		char *str;

	}

	union Glob_t storage;

	int storage_type;

	storage_type = 0;

	storage.ival = 42;

	...

	...

	storage_type = 1;

	storage.fval = 3.1415926;

	...

	...

	if (storage_type == 1)

		printf(“%g”, storage.fval);

�
C Pre-Processor (CPP):

The source text of the C program passes through a pre-processing step that makes textual changes before the C compiler acts on it. Commands to the Pre-processor (“CPP directives”) are indicated by a ‘#’ character as the first non-whitespace character on a line.

#include <math.h>

Effectively inserts the whole text of the “header” file math.h into the program at this point.

#define MAX_NUM 30

Defines the constant MAX_NUM. Every use of “MAX_NUM” later in the same file will get textually replaced by “30”.

Exception: replacement does not occur inside quated strings.

#define MAX(a, b) (((a) > (b)) ? (a) : (b))

Defines the “macro” MAX. every use of “MAX(expr1, expr2)” later in the same file will get textually replaced by:

(((expr1) > (expr2)) ? (expr1) : (expr2))

�
C Pre-Processor (CPP): (continued)

#undef MAX

Causes any previous definition of MAX to be forgotten.

#ifdef SPECIAL

	...

	...

#endif

Causes any C code or CPP directives between the #ifdef and the #endif to ignored unless SPECIAL has previously been defined via an #define statement.

#ifndef SPECIAL

	...

	...

#endif

The opposite of #ifdef. (Intervening code is ignored if SPECIAL has been defined.

#ifdef AAA

	#ifdef BBB

		printf(“AAA and BBB defined \n”);

	#else

		printf(“AAA defined but not BBB \n”);

�	#endif /* BBB */

#else

	printf(“AAA not defined \n”);

#endif /* AAA */

�
C Pre-Processor (CPP): (continued)

#if defined(AAA) && defined(BBB)

	...

	...

#elif defined(CCC)

	...

	...

#else

	...

	...

#endif

The #if directive takes an integral expression and evaluates it at pre-processing time. The following code is ignored if the expression evaluates to zero.

The expression can use the CPP operator ‘defined()’. The #elif and #else directives can be used in a manner like the C if...else if...else.

#if 0

	printf(“This is never printed \n”);

#endif

Since nesting of CPP directives is supported but nesting of comments is not, it is usually better to use CPP directives rather than /* */ to temporarily disable a section of code. (“comment-out”).

�
C Pre-Processor (CPP): (continued)

Stringize operator:

#define REPORT(adj) “Having a” #adj “time”

	printf(REPORT(wonderful));

Token pasting operator:

#define SPORT(x) x ##ball

	char *baseball = “baseball”;

 *football = “football”;

printf(Spring ? SPORT(base) : SPORT(foot));

Assert macro:			(Ignored if NDEBUG defined)

#include <assert.h>

char *copy_string(char *str)

�{

	char *new_str;

	assert(str != NULL);

	

new_str = malloc(strlen(str) + 1);

	strcpy(new_str, str);

	return(new_str);

}

�
BITWISE Operators:

Operate on integral expressions:

~	bitwise complement

&	bitwise and

|	bitwise or

^	bitwise exclusive or

<<	left shift

>>	right shift

The bitwise complement ~ converts each 1-bit into a 0-bit and vice versa.

Eg.

	~0		is all 1-bits.

~1		is all 1-bits except for the least

significant bit.

The bitwise and & is typically used to reset bits to zero.

Eg.

	X & ~077 masks the last 6 bits of x to zero.	

The bitwise or | is typically used to set bits to one.

Eg.

	X = 0;

	X |= ~077; sets the last 6 bits of x to 1-bits.

The shift operators shift the bits in the left operand by the number of bit-position given by the right operand.

Eg.

	X << 2 is equal to x*4 (if x is not too big)

�
Bit Manipulation:

Examples:

#define 	REGISTERED 	1

#define 	PAID		2

#define 	PASSED		4

typedef struct

{

	char *name;

	int id;

	unsigned status;

} Student_t;

Student_t fred;

fred.status = 0; //set all bits to zero

	...

fred.status |= REGISTERED;

fred.status |= PAID;

	...

if (fred.status & PAID ==0)

	printf(“%s has not paid\n”), fred.name);

Alternative: bitfields:

typedef struct

{

	char *name;

	int id;

	unsigned registered:1;

	unsigned paid:1;

} Student_t;

fred.registered = 1;

fred.paid = 1;

if(fred.paid |= 1)

	...

Common Errors in C:

Bad data handling:

Uninitialized variables

Array subscripts out of range

Dereferencing a pointer that doesn’t point to valid memory

Division by zero eg. Sum/count

Invalid values passed to function eg. Sqrt(-1)

Integer division when floating point division is desired eg. 	int sum, count;

...

printf(“Average = %g”, sum/count);

Testing floating point values for equality

Eg.	for(x=0.0; x!=9.9; x+=0.1)

Insufficient memory allocated for string operations

Eg.	char str[5];

	Strcpy(str, “Hello”);

Forgetting to null-terminate a string

Values too big or too small for the data type

Eg.	char ch;

	While((ch = getchar()) != EOF)

�
Common Errors in C:

Syntactic Slips:

Unterminated comments			eg.	/* This is an example

Misplaced semicolons 			eg.	if(num > 0);

Printf(“Positive”);

Use of = instead of == in an if statement

eg.	if(ch = ‘\n’)

Missing braces when needed		eg.	if(num>0.0)

		sum += sqrt(num);

		num_positive++;

Break only breaks out of one level of switch, for, while						eg.	while(not_done)

{

	switch(state)

	{

		case ERROR:

			break;

		case STATE1:

			do_something;

			break;

		case STATE2:

			...

	}

	...

}

�
Common Errors in C:

Faulty Functions:

Lack of function prototype declarations

Incorrect arguments to function calls

(when missing declarations or when varargs functions)

		char ch;

		printf(“The input is %s”, ch);

		double num;

		scanf(“%f”, num);

Undesired side-effects in functions

Attempts to use a function to change its arguments

Void decrement (int num)

{

	--num;

}

			Page � PAGE �1�

str is pointer to character so *str is the content of str

Should check that strlen(str) < MAX_SIZE

The #else directive may be used with the #ifdef or #ifndef directives.

Aborts the program if the assertion fails.

