

Page 1

Table of Contents

page

· The “date” Class (an example)

2

· Using the date class

3

· Constructors & Destructors

4

· Definition of the destructor

7

Inheritance (an example)

8

· The “date” Class (an example)

Header file:

class date

{

int day, month, year;
//private date member

 public:

//public member function

void set(int, int, int);

void get(int*, int*, int*);

void increment();

void print();

};

//--

void date::set(int d, int m, int y)

{

day = d;

month = m;

year = y;

}

void date::get(int *ptr_day, int *ptr_month, int

 *ptr_year)

{

*ptr_day = day;

*ptr_month = month;

*ptr_year = year;

}

void date::increment()

{

if (++day > 28)

 {

// do the hard part

 }

}

void date::print()

{

cout << day << ’/’ << month << ’/’ << year;

}

//--

Using the date class:

#include “date.h”
//header file containing class

//declaration

void myfunc()

{

date exam_day, next_day;

exam_day.set(28, 4, 2001);

cout << “The exam will be on: “;

exam_day.print();

next_day = exam_day;

next_day.increment();

cout << “The day after the exam is: “;

next_day.print();

}

Constructors & Destructors:
In the ‘date’ class example, we declared variables of type ‘date’ which didn’t get initialized until the ‘set’ function was called. To force initialization at the time of declaration, we can define a constructor function for the ‘date’ class. Constructors have the same name as the class. They are executed at the point where an object of that class comes into being.

Eg. Replace the ‘set’ member function with a function named ‘date’:

Class date

{

int day, month, year;

 public:

date (int, int, int);
//no return type for

//constructor

void get(int*, int*, int*);

void increment();

void print();

}

date::date(int d, int m, int y)

{

day = d;

month = m;

year = y;

}

· with the above constructors, we would use the ‘date’ class as follows:

void myfunc()

{

date exam_day(28,4,2001); //abbreviation for: date exam_day = date(28,4,2001);

cout << “The exam will be on:”;

exam_day.print();

...

}

· we could overload the constructor and supply a default argument to the above constructor so that we would have a choice of 2 constructors:

class date

{

int day, month, year;

 public:

date (int, int, int = this_year());

date (char *);

//possible usage: date Easter(11,4); date Christmas(“Dec 25”);
//as before

}

date::date(char * s)

{

// parse the string to get ‘day’, ‘month’, ‘year’

}

· Now suppose that we cache the string form of the date, we add a new private date member ‘str’ into which we will copy the string form of the date.

Eg. The (char *) constructor would then look like:

date::date(char * s)

sd{

str = new char[strlen(s) + 1]; //allocates memory

strcpy(str, s);

//parse the string to get ‘day’, ‘month’, ‘year’

}

· The constructor gets called for each object of class ‘date’, and each time some more memory is allocated. We need to free this memory somewhere.

· The solution: define a destructor function for the ‘date’ class:

class date

{

int day, month, year;

char *str;

 public:

date (int, int, int = this_year());

date (char *);

~date();

//declaration of the destructor

//as before

}

Definition of the destructor:

Date::~date()

{

delete[]str; //free the memory previously allocated by new

}

void myfunc()

{

date exam_day(28,4); //constructor called

int month;

extern date Easter;

Easter.get(&month, &month, &month);

if(month >= 4)

 {

date last_class(13,4); //constructor called

cout << “the last class is”;

last_class.print();

 }

//destructor called

cout << “The exam is: “;

exam_day.print();

}

//destructor called

Inheritance (an example):
class employee

{

string name;

date start;

short age;

short dept;

static employee *list; //static makes it a class variable
 public:

employee(char *n, char *sd, short a, short d);

virtual void print();

static void print_all();

employee *next;

};

employee::employee(char *n, char *sd, short a, short d)

: name(n), start(sd)

{

age = a;

dept = d;

next = list;

list = this; //this is the hidden parameter to all member functions
}

void employee::print()

{

cout << “Employee: “;

name.print();

cout << “Age: “ << age << “Dept: “ << dept;

cout << “Starting date: “;

start.print();

}

employee * employee::list = 0;

void employee::print_all();

{

for(employee *p = list; p!=0; p=p->next)

 p->print(); //calls the ‘print’ function for each employee
}

Now we define a derived class:

Class manager : public employee

{

employee * group;

short level;

 public:

manager(char *n, char *sd, short a, short d, short lvl)

void print(); //the manager class will have its own version of ‘print’
}

manager::manager(char *n, char *sd, short a, short d,

short lvl): employee(n, sd, a, d)

{

group = 0;

level = lvl;

}

void manager::print()

{

employee::print(); //calls the base class’s ‘print’

cout << “Level: “ << level;

}

int main (int, char **)

{

employee ee(“J. Brown”, “Apr 6, 1987”, 35, 3);

manager mm(“V. Gabereau”, “Dec 11, 1967”, 43, 3);

employee::print_all();

return(0);

}

